
ATPG and Fault Simulation
Marie-Lise Flottes (flottes@lirmm.fr)

1

Outline

 Introduction (reminder)
 ATPG: process and tools
 Simulation

2

3

What is a test?

X
1
0
0
1
0
1
X

1/0*Primary
inputs
(PI)

Primary
outputs
(PO)

Combinational circuit

Test Vector
Test Response

0/1*

 “Essai partiel de fonctionnement”

4

What is a test generation?

X
1
0
0
1
0
1
X

Stuck-at-0 fault

1/0*

“sensibilisation” de la faute

“Propagation de l’erreur”

Primary
inputs
(PI)

Primary
outputs
(PO)

Combinational circuit

0/1*

Fault effect
“erreur”

“J
us

tif
ic

a
tio

n
”

Example

 Generate a test for e stuck-at-1

a

b
c

d

e

f

g

Sa1

5

Example

 1) Activate the fault (”sensibilisation”)

a

b
c

d

e

f

g

0/1*

6

0 valeur que l’on cherche à assigner sur e
1* valeur réelle de e si Stuck-at-1/e (fault effect)

Example

 2) Propagate the fault effect
(“propagation”)

a

b
c

d

e

f

g

0/1*
0/1*

0
Side input

0/1*

7

Example

 3) Justify expected values on side-inputs
and inputs of the gate under test
(“justification”)

a

b
c

d

e

f

g

0/1*
0/1*

0

0/1*

0

8

Example

 3) Justify expected values on side-inputs
and inputs of the gate under test
(“justification”)

a

b
c

d

e

f

g

0/1*
0/1*

0

0/1*

01

1

9

Example

a

b
c

d

e

f

g

0/1
0/1

0

0/1

01

1

0

10

Some Considerations

 Test generation on Combinational circuit
is easy

 But….

11

Some problems (the complexity)

2011 : 2.2 Billion Transistors

2022 : sur 1 mm², Intel intègre environ 80 millions de transistors avec le
procédé Intel 7(10nm) et en gravera 160 millions avec Intel 4 (7nm), trillion
de transistors avant 2030.

12

Some problems (the circuit)

 Redundant faults
 E.g. Generate a test for c stuck-at-1
 Sensibilisation + propagation

a

b
c

d

e

f

g

13

0/1*
0/1* 0/1*

1

0

0/1*

Some problems (the circuit)

a

b
c

d

e

f

g

0/1*

0
0

1
0/1*

0/1*
????

0

14

 c stuck-at-1 is an untestable fault

 Redundant faults
 E.g. Generate a test for c stuck-at-1
 Justification (no solution)

0/1*

1

!!!!!

Outline

 Introduction (reminder)
 ATPG: process and tools
 Simulation

15

Goals

 Generate as quickly as possible the
shortest test sequence for a fault
coverage (FC%) target

 Reminder : FC = % # Detected Faults / #Total Faults

 Industrial tool
 Automatic Test Pattern Generator (ATPG)

16

ATPG Architecture

17

Circuit
description

Reduced
Fault List

Test
Pattern

Fault Simulator

Fault
Coverage

TPG
Algorithm

Fault Manager

The test plan

 Step 1:
 Identify the set of target faults (complete

fault list).

18

Fault Manager

The test plan

 Step 1:
 Tools – Fault list generator

19

Circuit
description

Fault List
Generator

Complete
Fault List

Fault Manager

The test plan (cont’d)

 Step 1:
 Identify the set of target faults (complete

fault list).

 Step 2:
 Identify the minimum set of distinct faults

to target (reduced fault list thanks to
equivalence/implication rules)

20

Fault Manager

21

Circuit
description

Fault List
Generator

Complete
Fault List

Fault list
minimization

Reduced
Fault List

The test plan (cont’d)

Fault List Minimisation e.g.

 Equivalent faults
 e stuck-at-1

a

b
c

d

e

f

g

22

1
0/1* 0/1*

0

0/1*

01

1

Fault List Minimisation e.g.

 Equivalent faults
 e stuck-at-1
 Test vector (a,b) = (0,1)

a

b
c

d

e

f

g

23

1
0/1* 0/1*

0

0/1*

01

1

00

Fault List Minimisation e.g.

 Equivalent faults
 e stuck-at-1 or f stuck-at-1
 Test vector (a,b) = (0,1)

a

b
c

d

e

f

g

24

1

0/1*

0/1*

0/1*

1

0

1

Fault List Minimisation e.g.

 Equivalent faults
 e stuck-at-1 or f stuck-at-1
 Test vector (a,b) = (0,1)

a

b
c

d

e

f

g

25

1

0/1*

0/1*

0/1*

1

0

1

Fault List Minimisation e.g.

 Equivalent faults
 e stuck-at-1 (S-A-1) or f S-A-1
 Test vector (a,b) = (0,1)

 Rmk: S-A-1 on both inputs of an OR gate are
equivalent (gate level relationship)

a

b
c

d

e

f

g

26

1

0/1*

0/1*

0/1*

1

0

1

0

Key takeaways
 Th1: In a combinatorial tree (without divergence)

implemented with conventional gates (no XOR), any test
that detects all stuck-at faults on the primary inputs also
detects all stuck-at faults.

 Th2: In a combinational circuit implemented with
conventional gates (no XOR), any test that detects all
stuck-at faults on the primary inputs and divergence
branches (checkpoints) also detects all stuck-at faults.

 After applying Theorem 1 or 2, the list of faults can still
be reduced by using the equivalence rules at the gate
level.

28

Circuit
description

Reduced
Fault List

Fault Manager

Test
Pattern

Test Pattern
Generator

Fault
Coverage

The test plan (cont’d)

The test plan (cont’d)
 Step 2:

 Identify the minimum set of distinct target
faults (fault collapsing)

 Step 3:
 Generate test vectors for every target,

 3.1 generate an initial set of vectors at « no » cost (manually,
from design validation, randomly, ...) less expensive than
deterministic procedures

 3.2 generate vectors for remaining faults (use testability analysis
for speeding up test generation : fault selection and vector
generation)

 3.3 use fault simulation for excluding faults detected by the
pattern generated so far 29It

e
ra

tiv
e

pr
oc

e
ss

es

30

The test plan (cont’d)

Tools

31

Circuit
description

Reduced
Fault List

Test
Pattern

Fault Simulator

Fault
Coverage

Detected
Faults

TPG
Algorithm

Fault Selector

Target
Fault

The test plan (cont’d)

 Step 4 (optional):
 Compact the test pattern

 Static compaction (compact after generation of the whole test
pattern)

 V1(e1,e2,e3)=(0,X,1) and V2(e1,e2,e3)=(0,0,X)
 Vcompacted(e1,e2,e3)=(0,0,1), covers V1 and V2

 Dynamic compaction
 Start generation of next vector from PIs values assigned

from the last generated vecor

32

Testability Analyzer

 High trade-off between result accuracy
and CPU time.

 A Circuit is testable when you ATPG can
manage it!!!!!

33

Outline

 Introduction (reminder)
 ATPG: process and tools
 Simulation

34

Fault Simulation

 Problem and motivation
 Fault simulation algorithms

 Serial
 Parallel
 Deductive

35

Problem

 Given
 A circuit
 A sequence of test vectors
 A fault model

 Determine
 Fault coverage
 Set of undetected faults

36

Motivation
 Determine test quality (FC%)
 Identify undetected fault for further test improvement
 Fault dictionnary for diagnostic

 Fault-dropping -- a fault once detected is dropped
from consideration as more vectors are simulated;
fault-dropping may be suppressed for diagnosis

 Fault sampling -- a random sample of faults is
simulated when the circuit is large

37

Fault Simulation Scenario
 Circuit model: mixed-level

 Mostly logic with some switch-level for high-impedance (Z) and
bidirectional signals

 High-level models (memory, etc.)

 Signal states: logic
 Two (0, 1) or three (0, 1, X) states for purely Boolean logic

circuits

 Four states (0, 1, X, Z) for sequential MOS circuits

 Timing:
 Zero-delay for combinational and synchronous circuits

 Mostly unit-delay for circuits with feedback

38

Fault Simulation Scenario
(Continued)
 Faults:

 Mostly single stuck-at faults
 Sometimes stuck-open, transition, and path-delay

faults; analog circuit fault simulators are not yet in
common use

39

Fault Simulation Algorithms

 Serial
 Parallel
 Deductive

40

Serial Algorithm
 Based on logic simulation:

 Algorithm: Simulate fault-free circuit and save responses.
Repeat following steps for each fault in the fault list:
 Modify netlist by injecting one fault
 Simulate modified netlist, vector by vector, comparing

responses with saved responses
 If response differs, report fault detection and suspend

simulation of remaining vectors

 Advantages:
 Easy to implement; needs only a true-value simulator,

less memory
 Most faults, including analog faults, can be simulated

41

Serial algorithm (to sum up)

 + very simple
 - not efficient

 Much repeated computation; CPU time
prohibitive for VLSI circuits

 Intel I7 is about ~10M gates
 20M faults, 1 simulation = 1s
 20Ms ~= 231 days

 Alternative: Simulate many faults together
42

Parallel Fault Simulation
 Exploits inherent bit-parallelism of logic operations on

computer words
 Storage: one word per line, one fault per bit (first

word bit stores line fault-free value
 Multi-pass simulation: Each pass simulates w-1 new

faults, where w is the machine word length
 Speed up over serial method ~ w-1
 Not suitable for circuits with timing-critical and non-

Boolean logic
 Best with 2 states (0,1), requires a second word per

line for X encoding (unknows in sequential circuits)
43

Parallel Fault Simulation

44

Parallel algorithm (to sum up)

 + still very simple
 + Memory requirement known
 + more efficient than serial

 Intel I7 is about ~10M gates
 20M faults, 1 simulation = 1s
 20Ms ~= 231 days
 Using a 64bits machine: 231/63 ~= 4 days

 Requires several runs when
#faults>word size (e.g.>64)

45

Deductive Fault Simulation
 Each line k contains a list Lk of faults detectable on it
 Following true-value simulation of each vector, fault lists

of all gate output lines are updated using set-theoretic
rules, signal values, and gate input fault lists

 PO fault lists provide detection data
 Limitations:

 Set-theoretic rules difficult to derive for non-Boolean
gates

 Gate delays are difficult to use

46

Deductive Fault Simulation

47

Deductive algorithm

 ++ more efficient than parallel
 Single iteration for all faults

 Intel I7 is about ~10M gates
 20M faults, 1 simulation = 1s
 20Ms ~= 1s

 - difficult to predict peak memory usage

48

Exercice

49

Considering the reduced list of faults below,

which faults are detected by the input vector 01110?

In practice

 Use of Synopsys© Tetramax (ATPG)

TMAX
Circuit.v

Technology_library.v Test_vectors.stil

FaultCoverage

Fault List

50

Invoking TetraMax
 source /soft/Synopsys/source_config/.config_tetramax_standalone_vI-2013.12

 tmax

You can
enter
commands

51

Step1

 Read and Compile the circuit description

read_verilog C35.v –library

read_verilog exo1.v

run_build_model

Run_drc

52

Step 2

 Generate the fault list

set_faults -model stuck

add_faults -all

53

Step 3
 Specify the test vectors to be simulated

 We have to use the stil syntax
 Look in the example

Pattern "_pattern_" {
W "_default_WFT_";
"precondition all Signals": C {

"_pi"=0000; "_po"=XX; }

"pattern 0": Call "capture" {
"_pi"=1010; "_po”=LL; }

}
54

Step 3
 Import the test vector file
set_patterns -external example_exo1.stil
 Now we can run a simulation
run_simulation
 You will got errors:
TEST-T> run_simulation
Begin good simulation of 1 external

patterns.
0 S2 (exp=0, got=1)

Simulation completed: #patterns=1,
#fail_pats=1(0), #failing_meas=1(0),
CPU time=0.00

55

Step 3

 Tmax has to calculate the gold outputs
before running the fault simulation

run_simulation -override_differences

 Now you can run the fault simulation
run_fault_sim

56

