
ATPG and Fault Simulation
Marie-Lise Flottes (flottes@lirmm.fr)

1

Outline

 Introduction (reminder)
 ATPG: process and tools
 Simulation

2

3

What is a test?

X
1
0
0
1
0
1
X

1/0*Primary
inputs
(PI)

Primary
outputs
(PO)

Combinational circuit

Test Vector
Test Response

0/1*

 “Essai partiel de fonctionnement”

4

What is a test generation?

X
1
0
0
1
0
1
X

Stuck-at-0 fault

1/0*

“sensibilisation” de la faute

“Propagation de l’erreur”

Primary
inputs
(PI)

Primary
outputs
(PO)

Combinational circuit

0/1*

Fault effect
“erreur”

“J
us

tif
ic

a
tio

n
”

Example

 Generate a test for e stuck-at-1

a

b
c

d

e

f

g

Sa1

5

Example

 1) Activate the fault (”sensibilisation”)

a

b
c

d

e

f

g

0/1*

6

0 valeur que l’on cherche à assigner sur e
1* valeur réelle de e si Stuck-at-1/e (fault effect)

Example

 2) Propagate the fault effect
(“propagation”)

a

b
c

d

e

f

g

0/1*
0/1*

0
Side input

0/1*

7

Example

 3) Justify expected values on side-inputs
and inputs of the gate under test
(“justification”)

a

b
c

d

e

f

g

0/1*
0/1*

0

0/1*

0

8

Example

 3) Justify expected values on side-inputs
and inputs of the gate under test
(“justification”)

a

b
c

d

e

f

g

0/1*
0/1*

0

0/1*

01

1

9

Example

a

b
c

d

e

f

g

0/1
0/1

0

0/1

01

1

0

10

Some Considerations

 Test generation on Combinational circuit
is easy

 But….

11

Some problems (the complexity)

2011 : 2.2 Billion Transistors

2022 : sur 1 mm², Intel intègre environ 80 millions de transistors avec le
procédé Intel 7(10nm) et en gravera 160 millions avec Intel 4 (7nm), trillion
de transistors avant 2030.

12

Some problems (the circuit)

 Redundant faults
 E.g. Generate a test for c stuck-at-1
 Sensibilisation + propagation

a

b
c

d

e

f

g

13

0/1*
0/1* 0/1*

1

0

0/1*

Some problems (the circuit)

a

b
c

d

e

f

g

0/1*

0
0

1
0/1*

0/1*
????

0

14

 c stuck-at-1 is an untestable fault

 Redundant faults
 E.g. Generate a test for c stuck-at-1
 Justification (no solution)

0/1*

1

!!!!!

Outline

 Introduction (reminder)
 ATPG: process and tools
 Simulation

15

Goals

 Generate as quickly as possible the
shortest test sequence for a fault
coverage (FC%) target

 Reminder : FC = % # Detected Faults / #Total Faults

 Industrial tool
 Automatic Test Pattern Generator (ATPG)

16

ATPG Architecture

17

Circuit
description

Reduced
Fault List

Test
Pattern

Fault Simulator

Fault
Coverage

TPG
Algorithm

Fault Manager

The test plan

 Step 1:
 Identify the set of target faults (complete

fault list).

18

Fault Manager

The test plan

 Step 1:
 Tools – Fault list generator

19

Circuit
description

Fault List
Generator

Complete
Fault List

Fault Manager

The test plan (cont’d)

 Step 1:
 Identify the set of target faults (complete

fault list).

 Step 2:
 Identify the minimum set of distinct faults

to target (reduced fault list thanks to
equivalence/implication rules)

20

Fault Manager

21

Circuit
description

Fault List
Generator

Complete
Fault List

Fault list
minimization

Reduced
Fault List

The test plan (cont’d)

Fault List Minimisation e.g.

 Equivalent faults
 e stuck-at-1

a

b
c

d

e

f

g

22

1
0/1* 0/1*

0

0/1*

01

1

Fault List Minimisation e.g.

 Equivalent faults
 e stuck-at-1
 Test vector (a,b) = (0,1)

a

b
c

d

e

f

g

23

1
0/1* 0/1*

0

0/1*

01

1

00

Fault List Minimisation e.g.

 Equivalent faults
 e stuck-at-1 or f stuck-at-1
 Test vector (a,b) = (0,1)

a

b
c

d

e

f

g

24

1

0/1*

0/1*

0/1*

1

0

1

Fault List Minimisation e.g.

 Equivalent faults
 e stuck-at-1 or f stuck-at-1
 Test vector (a,b) = (0,1)

a

b
c

d

e

f

g

25

1

0/1*

0/1*

0/1*

1

0

1

Fault List Minimisation e.g.

 Equivalent faults
 e stuck-at-1 (S-A-1) or f S-A-1
 Test vector (a,b) = (0,1)

 Rmk: S-A-1 on both inputs of an OR gate are
equivalent (gate level relationship)

a

b
c

d

e

f

g

26

1

0/1*

0/1*

0/1*

1

0

1

0

Key takeaways
 Th1: In a combinatorial tree (without divergence)

implemented with conventional gates (no XOR), any test
that detects all stuck-at faults on the primary inputs also
detects all stuck-at faults.

 Th2: In a combinational circuit implemented with
conventional gates (no XOR), any test that detects all
stuck-at faults on the primary inputs and divergence
branches (checkpoints) also detects all stuck-at faults.

 After applying Theorem 1 or 2, the list of faults can still
be reduced by using the equivalence rules at the gate
level.

28

Circuit
description

Reduced
Fault List

Fault Manager

Test
Pattern

Test Pattern
Generator

Fault
Coverage

The test plan (cont’d)

The test plan (cont’d)
 Step 2:

 Identify the minimum set of distinct target
faults (fault collapsing)

 Step 3:
 Generate test vectors for every target,

 3.1 generate an initial set of vectors at « no » cost (manually,
from design validation, randomly, ...) less expensive than
deterministic procedures

 3.2 generate vectors for remaining faults (use testability analysis
for speeding up test generation : fault selection and vector
generation)

 3.3 use fault simulation for excluding faults detected by the
pattern generated so far 29It

e
ra

tiv
e

pr
oc

e
ss

es

30

The test plan (cont’d)

Tools

31

Circuit
description

Reduced
Fault List

Test
Pattern

Fault Simulator

Fault
Coverage

Detected
Faults

TPG
Algorithm

Fault Selector

Target
Fault

The test plan (cont’d)

 Step 4 (optional):
 Compact the test pattern

 Static compaction (compact after generation of the whole test
pattern)

 V1(e1,e2,e3)=(0,X,1) and V2(e1,e2,e3)=(0,0,X)
 Vcompacted(e1,e2,e3)=(0,0,1), covers V1 and V2

 Dynamic compaction
 Start generation of next vector from PIs values assigned

from the last generated vecor

32

Testability Analyzer

 High trade-off between result accuracy
and CPU time.

 A Circuit is testable when you ATPG can
manage it!!!!!

33

Outline

 Introduction (reminder)
 ATPG: process and tools
 Simulation

34

Fault Simulation

 Problem and motivation
 Fault simulation algorithms

 Serial
 Parallel
 Deductive

35

Problem

 Given
 A circuit
 A sequence of test vectors
 A fault model

 Determine
 Fault coverage
 Set of undetected faults

36

Motivation
 Determine test quality (FC%)
 Identify undetected fault for further test improvement
 Fault dictionnary for diagnostic

 Fault-dropping -- a fault once detected is dropped
from consideration as more vectors are simulated;
fault-dropping may be suppressed for diagnosis

 Fault sampling -- a random sample of faults is
simulated when the circuit is large

37

Fault Simulation Scenario
 Circuit model: mixed-level

 Mostly logic with some switch-level for high-impedance (Z) and
bidirectional signals

 High-level models (memory, etc.)

 Signal states: logic
 Two (0, 1) or three (0, 1, X) states for purely Boolean logic

circuits

 Four states (0, 1, X, Z) for sequential MOS circuits

 Timing:
 Zero-delay for combinational and synchronous circuits

 Mostly unit-delay for circuits with feedback

38

Fault Simulation Scenario
(Continued)
 Faults:

 Mostly single stuck-at faults
 Sometimes stuck-open, transition, and path-delay

faults; analog circuit fault simulators are not yet in
common use

39

Fault Simulation Algorithms

 Serial
 Parallel
 Deductive


40

Serial Algorithm
 Based on logic simulation:

 Algorithm: Simulate fault-free circuit and save responses.
Repeat following steps for each fault in the fault list:
 Modify netlist by injecting one fault
 Simulate modified netlist, vector by vector, comparing

responses with saved responses
 If response differs, report fault detection and suspend

simulation of remaining vectors

 Advantages:
 Easy to implement; needs only a true-value simulator,

less memory
 Most faults, including analog faults, can be simulated

41

Serial algorithm (to sum up)

 + very simple
 - not efficient

 Much repeated computation; CPU time
prohibitive for VLSI circuits

 Intel I7 is about ~10M gates
 20M faults, 1 simulation = 1s
 20Ms ~= 231 days

 Alternative: Simulate many faults together
42

Parallel Fault Simulation
 Exploits inherent bit-parallelism of logic operations on

computer words
 Storage: one word per line, one fault per bit (first

word bit stores line fault-free value
 Multi-pass simulation: Each pass simulates w-1 new

faults, where w is the machine word length
 Speed up over serial method ~ w-1
 Not suitable for circuits with timing-critical and non-

Boolean logic
 Best with 2 states (0,1), requires a second word per

line for X encoding (unknows in sequential circuits)
43

Parallel Fault Simulation

44

Parallel algorithm (to sum up)

 + still very simple
 + Memory requirement known
 + more efficient than serial

 Intel I7 is about ~10M gates
 20M faults, 1 simulation = 1s
 20Ms ~= 231 days
 Using a 64bits machine: 231/63 ~= 4 days

 Requires several runs when
#faults>word size (e.g.>64)

45

Deductive Fault Simulation
 Each line k contains a list Lk of faults detectable on it
 Following true-value simulation of each vector, fault lists

of all gate output lines are updated using set-theoretic
rules, signal values, and gate input fault lists

 PO fault lists provide detection data
 Limitations:

 Set-theoretic rules difficult to derive for non-Boolean
gates

 Gate delays are difficult to use

46

Deductive Fault Simulation

47

Deductive algorithm

 ++ more efficient than parallel
 Single iteration for all faults

 Intel I7 is about ~10M gates
 20M faults, 1 simulation = 1s
 20Ms ~= 1s

 - difficult to predict peak memory usage

48

Exercice

49

Considering the reduced list of faults below,

which faults are detected by the input vector 01110?

In practice

 Use of Synopsys© Tetramax (ATPG)

TMAX
Circuit.v

Technology_library.v Test_vectors.stil

FaultCoverage

Fault List

50

Invoking TetraMax
 source /soft/Synopsys/source_config/.config_tetramax_standalone_vI-2013.12

 tmax

You can
enter
commands

51

Step1

 Read and Compile the circuit description

read_verilog C35.v –library

read_verilog exo1.v

run_build_model

Run_drc

52

Step 2

 Generate the fault list

set_faults -model stuck

add_faults -all

53

Step 3
 Specify the test vectors to be simulated

 We have to use the stil syntax
 Look in the example

Pattern "_pattern_" {
W "_default_WFT_";
"precondition all Signals": C {

"_pi"=0000; "_po"=XX; }

"pattern 0": Call "capture" {
"_pi"=1010; "_po”=LL; }

}
54

Step 3
 Import the test vector file
set_patterns -external example_exo1.stil
 Now we can run a simulation
run_simulation
 You will got errors:
TEST-T> run_simulation
Begin good simulation of 1 external

patterns.
0 S2 (exp=0, got=1)

Simulation completed: #patterns=1,
#fail_pats=1(0), #failing_meas=1(0),
CPU time=0.00

55

Step 3

 Tmax has to calculate the gold outputs
before running the fault simulation

run_simulation -override_differences

 Now you can run the fault simulation
run_fault_sim

56

