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What is a test?
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What is a test generation?
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Example

 Generate a test for e stuck-at-1
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Example

 1) Activate the fault (”sensibilisation”)
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0 valeur que l’on cherche à assigner sur e
1* valeur réelle de e si Stuck-at-1/e (fault effect)



Example

 2) Propagate the fault effect 
(“propagation”)
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Example

 3) Justify expected values on side-inputs 
and inputs of the gate under test 
(“justification”)
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Example

 3) Justify expected values on side-inputs 
and inputs of the gate under test 
(“justification”)
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Example

a 

b 
c 

d 

e 

f 

g 

0/1
0/1

0

0/1

01

1

0

10



Some Considerations

 Test generation on Combinational circuit 
is easy

 But….
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Some problems (the complexity)

2011 : 2.2 Billion Transistors

2022 : sur 1 mm², Intel intègre environ 80 millions de transistors avec le 
procédé Intel 7(10nm) et en gravera 160 millions avec Intel 4 (7nm), trillion 
de transistors avant 2030.

12



Some problems (the circuit)

 Redundant faults
 E.g. Generate a test for c stuck-at-1
 Sensibilisation + propagation
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Some problems (the circuit)
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 c stuck-at-1 is an untestable fault

 Redundant faults
 E.g. Generate a test for c stuck-at-1
 Justification (no solution)
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Goals

 Generate as quickly as possible the 
shortest test sequence for a fault 
coverage (FC%) target

 Reminder : FC = % # Detected Faults / #Total Faults

 Industrial tool
 Automatic Test Pattern Generator (ATPG)
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ATPG Architecture
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The test plan

 Step 1:
 Identify the set of target faults (complete 

fault list).
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The test plan

 Step 1:
 Tools – Fault list generator
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The test plan (cont’d)

 Step 1:
 Identify the set of target faults (complete 

fault list).

 Step 2:
 Identify the minimum set of distinct faults

to target (reduced fault list thanks to 
equivalence/implication rules)
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Fault List Minimisation e.g.

 Equivalent faults
 e stuck-at-1
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Fault List Minimisation e.g.

 Equivalent faults
 e stuck-at-1
 Test vector (a,b) = (0,1)
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Fault List Minimisation e.g.

 Equivalent faults
 e stuck-at-1 or f stuck-at-1
 Test vector (a,b) = (0,1)
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Fault List Minimisation e.g.

 Equivalent faults
 e stuck-at-1 or f stuck-at-1
 Test vector (a,b) = (0,1)
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Fault List Minimisation e.g.

 Equivalent faults
 e stuck-at-1 (S-A-1) or f S-A-1
 Test vector (a,b) = (0,1)

 Rmk: S-A-1 on both inputs of an OR gate are 
equivalent (gate level relationship)
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Key takeaways
 Th1: In a combinatorial tree (without divergence)

implemented with conventional gates (no XOR), any test
that detects all stuck-at faults on the primary inputs also
detects all stuck-at faults.

 Th2: In a combinational circuit implemented with
conventional gates (no XOR), any test that detects all
stuck-at faults on the primary inputs and divergence
branches (checkpoints) also detects all stuck-at faults.

 After applying Theorem 1 or 2, the list of faults can still
be reduced by using the equivalence rules at the gate
level.
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The test plan (cont’d)
 Step 2:

 Identify the minimum set of distinct target 
faults (fault collapsing)

 Step 3:
 Generate test vectors for every target,

 3.1 generate an initial set of vectors at « no » cost (manually, 
from design validation, randomly, ...) less expensive than
deterministic procedures

 3.2 generate vectors for remaining faults (use testability analysis
for speeding up test generation : fault selection and vector
generation)

 3.3 use fault simulation for excluding faults detected by the 
pattern generated so far 29It

e
ra

tiv
e

pr
oc

e
ss

es



30

The test plan (cont’d)



Tools
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The test plan (cont’d)

 Step 4 (optional):
 Compact the test pattern 

 Static compaction (compact after generation of the whole test 
pattern)

 V1(e1,e2,e3)=(0,X,1) and V2(e1,e2,e3)=(0,0,X) 
 Vcompacted(e1,e2,e3)=(0,0,1), covers V1 and V2

 Dynamic compaction
 Start generation of next vector from PIs values assigned

from the last generated vecor
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Testability Analyzer

 High trade-off between result accuracy 
and CPU time.

 A Circuit is testable when you ATPG can 
manage it!!!!!
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Outline

 Introduction (reminder)
 ATPG: process and tools
 Simulation
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Fault Simulation

 Problem and motivation
 Fault simulation algorithms

 Serial
 Parallel
 Deductive
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Problem

 Given
 A circuit
 A sequence of test vectors
 A fault model

 Determine
 Fault coverage
 Set of undetected faults
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Motivation
 Determine test quality (FC%)
 Identify undetected fault for further test improvement
 Fault dictionnary for diagnostic

 Fault-dropping -- a fault once detected is dropped 
from consideration as more vectors are simulated; 
fault-dropping may be suppressed for diagnosis

 Fault sampling -- a random sample of faults is 
simulated when the circuit is large
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Fault Simulation Scenario
 Circuit model: mixed-level

 Mostly logic with some switch-level for high-impedance (Z) and 
bidirectional signals

 High-level models (memory, etc.)

 Signal states: logic
 Two (0, 1) or three (0, 1, X) states for purely Boolean logic 

circuits

 Four states (0, 1, X, Z) for sequential MOS circuits

 Timing:
 Zero-delay for combinational and synchronous circuits

 Mostly unit-delay for circuits with feedback

38



Fault Simulation Scenario 
(Continued)
 Faults:

 Mostly single stuck-at faults
 Sometimes stuck-open, transition, and path-delay 

faults; analog circuit fault simulators are not yet in 
common use
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Fault Simulation Algorithms

 Serial
 Parallel
 Deductive
 ....
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Serial Algorithm
 Based on logic simulation:

 Algorithm: Simulate fault-free circuit and save responses.  
Repeat following steps for each fault in the fault list:
 Modify netlist by injecting one fault
 Simulate modified netlist, vector by vector, comparing 

responses with saved responses
 If response differs, report fault detection and suspend 

simulation of remaining vectors

 Advantages:
 Easy to implement; needs only a true-value simulator, 

less memory
 Most faults, including analog faults, can be simulated
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Serial algorithm (to sum up)

 + very simple
 - not efficient

 Much repeated computation; CPU time 
prohibitive for VLSI circuits

 Intel I7 is about ~10M gates
 20M faults, 1 simulation = 1s
 20Ms ~= 231 days

 Alternative: Simulate many faults together
42



Parallel Fault Simulation
 Exploits inherent bit-parallelism of logic operations on 

computer words
 Storage: one word per line, one fault per bit (first 

word bit stores line fault-free value
 Multi-pass simulation: Each pass simulates w-1 new 

faults, where w is the machine word length
 Speed up over serial method ~ w-1
 Not suitable for circuits with timing-critical and non-

Boolean logic
 Best with 2 states (0,1), requires a second word per 

line for X encoding (unknows in sequential circuits)
43



Parallel Fault Simulation
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Parallel algorithm (to sum up)

 + still very simple
 + Memory requirement known
 + more efficient than serial

 Intel I7 is about ~10M gates
 20M faults, 1 simulation = 1s
 20Ms ~= 231 days
 Using a 64bits machine: 231/63 ~= 4 days

 Requires several runs when 
#faults>word size (e.g.>64)
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Deductive Fault Simulation
 Each line k  contains a list Lk of faults detectable on it 
 Following true-value simulation of each vector, fault lists 

of all gate output lines are updated using set-theoretic 
rules, signal values, and gate input fault lists

 PO fault lists provide detection data
 Limitations:

 Set-theoretic rules difficult to derive for non-Boolean 
gates

 Gate delays are difficult to use
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Deductive Fault Simulation
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Deductive algorithm

 ++ more efficient than parallel
 Single iteration for all faults

 Intel I7 is about ~10M gates
 20M faults, 1 simulation = 1s
 20Ms ~= 1s

 - difficult to predict peak memory usage
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Exercice
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Considering the reduced list of faults below,

which faults  are detected by the input vector 01110?



In practice

 Use of Synopsys© Tetramax (ATPG)

TMAX
Circuit.v

Technology_library.v Test_vectors.stil

FaultCoverage

Fault List
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Invoking TetraMax
 source /soft/Synopsys/source_config/.config_tetramax_standalone_vI-2013.12

 tmax

You can 
enter 
commands
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Step1

 Read and Compile the circuit description

read_verilog C35.v –library

read_verilog exo1.v

run_build_model

Run_drc
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Step 2

 Generate the fault list

set_faults -model stuck

add_faults -all
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Step 3
 Specify the test vectors to be simulated

 We have to use the stil syntax
 Look in the example

Pattern "_pattern_" {
W "_default_WFT_";
"precondition all Signals": C { 

"_pi"=0000; "_po"=XX; }

"pattern 0": Call "capture" { 
"_pi"=1010; "_po”=LL; }

}
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Step 3
 Import the test vector file
set_patterns -external example_exo1.stil
 Now we can run a simulation
run_simulation
 You will got errors:
TEST-T> run_simulation
Begin good simulation of 1 external 

patterns.
0  S2  (exp=0, got=1)

Simulation completed: #patterns=1, 
#fail_pats=1(0), #failing_meas=1(0), 
CPU time=0.00
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Step 3

 Tmax has to calculate the gold outputs 
before running the fault simulation

run_simulation -override_differences

 Now you can run the fault simulation
run_fault_sim
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